π goes on and on,
and e is just as cursed.
I wonder, how does π begin
When its digits are reversed?

- Martin Gardner
Pi Day Mathematics Competition

Rules of the Competition

• This test consists of 40 multiple choice questions. Each question is followed by answers marked A, B, C, D, and E. Only one of these is correct.

• Mark your answer to each problem on the provided answer sheet. For each question, blacken the circle corresponding to at most one answer choice. Completely erase errors and any stray marks. Only answers properly marked on the answer sheet will be graded.

• SCORING: There are three sections in this test.

 Section 1 consists of 25 questions, each one worth one point. Section 2 consists of 10 questions, each one worth two points. Section 3 consists of 5 questions, each one worth three points.

 A correct answer to a question earns the full point value of the question. An incorrect answer carries a penalty of 25% of the point value of the question (that is, there is a penalty of 0.25 for incorrect answers in Section 1, a penalty of 0.5 for incorrect answers in Section 2, and a penalty of 0.75 for incorrect answers in Section 3). You neither win nor lose points for questions that are left unanswered.

• Contestants may not consult textbooks, notes, other people (apart from teammates), electronic devices (including calculators, mobile phones, etc.), or any other resources during the test.

• Figures are not necessarily drawn to scale.

• Before beginning the test, please make sure to write the name of your school and the names of all members of the team on the answer sheet.

• You have 90 minutes to complete the test.

• At the end of the 90 minutes, each team should submit one answer sheet.
Section 1

There are 25 questions in this section. Each question is worth 1 point. An incorrect answer carries a penalty of 0.25 points.

1. What is the value of \(\frac{3 \times 4^{2020} - 2 \times 4^{2019}}{2 \times 4^{2020} - 3 \times 4^{2019}} \)?
 (a) 0 (b) 1 (c) \(\frac{2}{5} \) (d) \(\frac{3}{2} \) (e) 2

2. Let \(a, b, c \) be positive integers satisfying \(3a = 5c \) and \(a + 2b = 3c \). What is the value of \(\frac{a - b + c}{b} \)?
 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

3. It is given that \(n - 5 \) is an even integer. Which of the following is always an odd integer?
 (a) \(n^8 + n^9 \) (b) \(5n + 3 \) (c) \(n^2 + 2n^5 \) (d) \(2^n + n^6 + n^5 \) (e) \(4n^2 + 3n + 1 \)

4. There are 174 liters of apple juice and 252 liters of orange juice in two different containers. These juices will be packaged in bottles of the same size without mixing the juices. What is the minimum number of bottles required?
 (a) 58 (b) 62 (c) 68 (d) 70 (e) 71

5. Let \(x = \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} \). Which of the following is equal to \(\frac{8}{7} + \frac{9}{8} + \frac{10}{9} - \frac{9}{10} \)?
 (a) \(x + 1 \) (b) \(x + 2 \) (c) \(x + 3 \) (d) \(x + 4 \) (e) \(x + 5 \)

6. How many triangles are there in the following figure?

 (a) 18 (b) 20 (c) 22 (d) 24 (e) 26

7. Suppose \(x \) is a real number such that \((x+1)(x+4) = 100 \). What is the value of \((x-1)(x+6) \)?
 (a) 85 (b) 90 (c) 95 (d) 100 (e) 105
8. Let \(a \) be a prime number such that \(10 < a < 20 \). Which of the following is the largest possible value of \(\frac{a+3}{a+5} \)?

(a) \(\frac{11}{12} \)
(b) \(\frac{10}{11} \)
(c) \(\frac{9}{10} \)
(d) \(\frac{8}{9} \)
(e) \(\frac{7}{8} \)

9. Let \(x \) and \(y \) be integers such that \(-2 < x \leq 5\) and \(0 \leq y < 7 \). What is the largest possible value of \(5y - 3x \)?

(a) \(-15\)
(b) \(0\)
(c) \(15\)
(d) \(30\)
(e) \(33\)

10. It is given that \((2x - 3)^2 + (y + 4)^2 = 0\) and \(4ax + 5y + 2 = 0\). What is the value of \(a \)?

(a) \(2\)
(b) \(3\)
(c) \(4\)
(d) \(5\)
(e) \(6\)

11. It is given that \(2^x = 10\), \(0.3^y = 9\) and \(5^z = 4\). Which of the following is the right ordering among \(x, y, z\)?

(a) \(x < y < z\)
(b) \(y < x < z\)
(c) \(x < z < y\)
(d) \(y < z < x\)
(e) \(z < x < y\)

12. Let \(x \) be a real number less than 2. Which of the following is equal to the expression \(\sqrt{x^2 - 3x + 2} + \sqrt{x^2 - 4x + 4} \)?

(a) \(x\)
(b) \(-x + 2\)
(c) \(x + 3\)
(d) \(-x - 2\)
(e) \(-x\)

13. If \(\sqrt{3} + \sqrt{5} + \sqrt{6} = a\) then what is the value of \(\sqrt{6} + \sqrt{10} + \sqrt{12}\) in terms of \(a\)?

(a) \(\sqrt{2}a\)
(b) \(\sqrt{3}a\)
(c) \(2a\)
(d) \(3a\)
(e) \(a + \sqrt{2}\)

14. Let \(ABCDEF\) be a regular hexagon and \(O\) is the center of circumferential circle of the hexagon. It is given that \([OK]\) is perpendicular to \([DC]\) and \(|HB| = 3|AH|\). If \(S_1\), \(S_2\) and \(S_3\) are the area of indicated regions, then what is the ratio \(\frac{S_3 - S_2}{S_1}\)?

(a) \(\frac{1}{7}\)
(b) \(\frac{1}{2}\)
(c) \(\frac{2}{5}\)
(d) \(\frac{3}{7}\)
(e) \(\frac{4}{11}\)
15. Suppose that \(\frac{37^2 - 9^2}{x} \) is an integer, where \(x \) is a prime number. What is the maximum possible value of \(9x^2 + 6x + 1 \)?

(a) 49
(b) 324
(c) 576
(d) 3600
(e) 4900

16. If \(3^{x+3} = 6^{x+1} \) then what is the value of \(4^{x+1} \)?

(a) 81
(b) 54
(c) 36
(d) 27
(e) 9

17. Which of the following is NOT a root of the equation \((x^2 - x)^2 - 8(x^2 - x) + 12 = 0\)?

(a) -2
(b) -1
(c) 2
(d) 3
(e) 4

18. In the given figure, \(E \) and \(F \) are midpoints of \(AD \) and \(BC \), respectively. Given that \(\text{Area}(BGF) = 6 \text{cm}^2 \) and \(\text{Area}(DEG) = 9 \text{cm}^2 \), what is the value of \(\text{Area}(ABCD) \) in \(\text{cm}^2 \)?

(a) 60
(b) 50
(c) 45
(d) 40
(e) 30

19. A painter has prepared a paint mixture of 1960 grams by using three main color paints: Red (R), White (W) and Yellow (Y). It is given that the amount of these three colors in the mixture satisfy the ratios \(\frac{R}{W} = \frac{W}{Y} = \frac{3}{5} \). How many more grams of yellow paint than red paint are there in the mixture?

(a) 160
(b) 200
(c) 320
(d) 640
(e) 720

20. Today’s date, written in the DD/MM/YYYY format, is 22/02/2020. How many dates (past, present, or future) can be written in this format using five 2’s and three 0’s?

(a) 14
(b) 21
(c) 28
(d) 42
(e) 56

21. Suppose \(A, B, C, D, E, F, G, H, I, J \) is a sequence of real numbers. We are told that \(C = 7 \) and \(D = G + 3 \). If, in addition, the sum of any 4 consecutive terms equals 40, what is the sum \(A + J \)?

(a) 10
(b) 14
(c) 17
(d) 20
(e) 23
22. In a bus, $\frac{5}{9}$ of the passengers have eye glasses and among passengers with eye glasses $\frac{4}{5}$ of them are females. If there are 4 male passengers wearing eye glasses in the bus, how many passengers are there in the bus who are not wearing eye glasses?

(a) 13
(b) 14
(c) 15
(d) 16
(e) 18

23. Graphs of $f(x)$ and $g(x)$ are given below. What is the value of $(gof)(1) + (fog)(3)$?

![Graph](image)

(a) 3
(b) 4
(c) 5
(d) 6
(e) 7

24. In the figure below, the point G is the center of gravity of triangle ABC. Given that $|CD| = 4|AD|$ and $|BE| = 2|EC|$, what is the value of the ratio $\frac{\text{Area}(DGEC)}{\text{Area}(ABC)}$?

![Diagram](image)

(a) $\frac{17}{15}$
(b) $\frac{16}{15}$
(c) $\frac{1}{3}$
(d) $\frac{14}{15}$
(e) $\frac{13}{15}$

25. Three players are throwing darts on a target. The possibility of hitting the target are $\frac{1}{5}$, $\frac{1}{3}$ and $\frac{3}{4}$, respectively, for the players. If each player makes only one throw, what is the probability that the target will be hit at least once?

(a) $\frac{2}{5}$
(b) $\frac{13}{15}$
(c) $\frac{12}{15}$
(d) $\frac{4}{5}$
(e) $\frac{14}{15}$
Section 2

There are 10 questions in this section. Each question is worth 2 points. An incorrect answer carries a penalty of 0.5 points.

26. Let \(N = 1 + 11 + 111 + \cdots + 11 \ldots 11 \) (2020 digits). What is the remainder when \(N \) is divided by 11?

(a) 0 (b) 1 (c) 5 (d) 9 (e) 10

27. It is given that parabola in the given figure intersects the \(x \)-axis at the points \(A(-1, 0) \) and \(B(5, 0) \). Let \(T \) be the vertex of the parabola. What is the area of the triangle \(ATB \)?

![Parabola diagram]

(a) 18 (b) 24 (c) 27 (d) 30 (e) 36

28. What is the sum of possible values of \(a \) for which the expression \(|2 - |3a - 4||\) takes its minimum value?

(a) \(\frac{6}{5} \) (b) \(\frac{3}{2} \) (c) \(\frac{7}{4} \) (d) \(\frac{8}{3} \) (e) 6

29. The following graph shows the interest rate versus duration of the investment of a bank. If 5,000 dollar is invested in this bank for 3 years and interest is computed yearly and interest is added to capital at the end of each year, how much is the account balance after 3 years?

![Interest rate graph]

(a) 6,890 (b) 7,165 (c) 7,257 (d) 7,392 (e) 7,463
30. When Person A and Person B work together, they can finish a given job in 12 days. However, after 4 days of working together, Person A quits. It takes Person B 12 days to complete the remaining work by himself. If Person A were to work on his own from start to end, how many days will it take him to finish the entire job?

(a) 18 (b) 24 (c) 28 (d) 36 (e) 40

31. Let N be the smallest positive integer divisible by every positive integer up to 10. What is the sum of the digits of N?

(a) 3 (b) 9 (c) 12 (d) 18 (e) 24

32. In the given figure, O is the center of the semi circle, measure of the angle EDO is 50° and measure of the angle ECO is 40°. What is the measure of the angle EFO in degrees?

(a) 65 (b) 60 (c) 55 (d) 50 (e) 45

33. In the following figure, 4 circles all with radius 1 unit are tangent to each other as well as to the larger circle and the smaller circle. What is the sum of the areas of the large circle and the small circle?

(a) 6π (b) $4\sqrt{2}\pi$ (c) 8π (d) $9\sqrt{3}\pi$ (e) 12π

34. Suppose a fair coin is tossed 6 times. What is the probability that the number of heads is greater than the number of tails?

(a) $\frac{1}{2}$ (b) $\frac{3}{8}$ (c) $\frac{7}{16}$ (d) $\frac{11}{32}$ (e) $\frac{25}{64}$
35. Maher has 4 different mathematics, 2 different history and 3 different English books. He would like to arrange these books on the same shelf so that all English books will be next to each other. How many different arrangement is possible?

(a) 6! (b) 7! (c) 6! · 3! (d) 6! · 4! (e) 7! · 3!

Section 3

There are 5 questions in this section. Each question is worth 3 points. An incorrect answer carries a penalty of 0.75 points.

36. Circles with radii 1, 2, 3 are mutually externally tangent as shown in the diagram. What is the area of the triangle determined by the points of tangency (shaded triangle)?

\[\text{(a) } \frac{3}{5} \quad \text{(b) } \frac{4}{5} \quad \text{(c) } 1 \quad \text{(d) } \frac{6}{5} \quad \text{(e) } \frac{4}{3} \]

37. Let \(P = \{2, 3, 5, 7\} \) be the set of prime numbers less than 10. How many different numbers can be written as a product of 5 prime numbers all belonging to \(P \)?

(a) 20 (b) 56 (c) 70 (d) 240 (e) 1024

38. In the given figure, \(O_1 \) and \(O_2 \) are the centers of the given circles. These two circles intersect at the points \(A \) and \(C \). If measure of the angle \(ADC \) is \(65^\circ \), then what is the measure of the angle \(ABC \) in degrees?

\[\text{(a) } 50 \quad \text{(b) } 55 \quad \text{(c) } 60 \quad \text{(d) } 65 \quad \text{(e) } 70 \]
39. For each integer \(z \), let \(f(z) = 2z^2 - z - 10 \). What is the sum of all values of \(f(z) \) that are prime numbers?

(a) 5 (b) 12 (c) 16 (d) 20 (e) 24

40. Which of the following numbers is the largest?

(a) \(\pi^3 \) (b) \(3\pi \) (c) \(8\pi/2 \) (d) \(\pi\sqrt{8} \) (e) \(9\pi \)
39. لأي عدد صحيح \(z \), افترض أن 10 - 2 = 0. ما المجموع كل قيم \(f(z) \) التي تشكل أعداد أولية؟

\[
\begin{align*}
(a) & \ 5 \\
(b) & \ 12 \\
(c) & \ 16 \\
(d) & \ 20 \\
(e) & \ 24
\end{align*}
\]

40. أي الأرقام الاتية هو الأكبر؟

\[
\begin{align*}
(a) & \ \pi^3 \\
(b) & \ 3\pi \\
(c) & \ 8^{\pi/2} \\
(d) & \ \pi^{\sqrt{8}} \\
(e) & \ 9\pi
\end{align*}
\]
د. لدى ماهر 4 كتب رياضيات مختلفة، وكتابي تاريخ مختلفين، وثلاثة كتب لغة إنجليزية مختلفة. يريد أن يرتب الكتب على نفس الرف بشرط أن كل كتب اللغة الإنجليزية متوازنة. بكم طريقة يمكن أن يرتب الكتب؟
(a) 6! (b) 7! (c) 6! 3! (d) 6! 4! (e) 6! 3! 3!

القسم الثالث

يحتوي هذا القسم على (5) سؤالًا. تمنح الإجابة الصحيحة على كل سؤال ثلاث نقاط، وكل إجابة خاطئة تخصم 0.75 نقطة.

36. دوائر لها أقاطر 1، 2، 3 وتمتسة خارجياً كما هو موضح في الشكل أدناه. ما مساحة المثلث المكون من نقاط التماس (المثلث المظلل)؟

\[
(a) \frac{3}{5} \quad (b) \frac{4}{5} \quad (c) 1 \quad (d) \frac{6}{5} \quad (e) \frac{4}{3}
\]

37. افترض أن \(\{3, 5, 7\} \subseteq P = \{2, 3, 5, 7\} \) هي مجموعة الأعداد الأولية الأصغر من 10. كم رقمًا مختلفاً يمكن كتابته كناتج ضرب 5 أرقام أولية كلها تنتمي إلى \(P\)?
(a) 20 (b) 56 (c) 70 (d) 240 (e) 1024

38. في الشكل المعطي، \(A, B, C\) هما نقاط المركز للدوائر المعطاة. هاتين الدائرتين تتقاطعان عند النقاط \(O_1\) و \(O_2\). إذا كان قياس الزاوية \(ABC\) هو 65°، ما قياس الزاوية \(ADC\) بالدرجات؟

\[
(a) 50 \quad (b) 55 \quad (c) 60 \quad (d) 65 \quad (e) 70
\]
30. عندما يعمل الشخص A والشخص B معاً، يستطيعان إنهاء العمل المطلوب خلال 12 يوماً. لكن، بعد 4 أيام من العمل معاً، انسحب الشخص A. العمل المتبقى يتطلب من الشخص B مرة 12 يوماً لإنهائه بمفرده. لو قام الشخص A بإنهاء العمل بمفرده من البداية إلى النهاية، كم يوماً يحتاج للانتهاء من العمل كاملاً؟

(a) 18 (b) 24 (c) 28 (d) 36 (e) 40

31. افترض أن N هو أصغر الأرقام الصحيحة الموجبة القابلة للقسمة على الأعداد من 1 حتى 10. ما مجموع الأرقام في منزل العدد N؟

(a) 3 (b) 9 (c) 12 (d) 18 (e) 24

32. في الشكل أدناه، O هو مركز نصف الدائرة، قياس الزاوية EDO هو 50° وقياس الزاوية ECO هو 40°. ما قياس الزاوية EFO بالدرجات؟

(a) 65 (b) 60 (c) 55 (d) 50 (e) 45

33. في الشكل أدناه: 4 دوائر متماسة ونصف قطر كل منها 1 وحدة، كما تمس هذه الدوائر كلًا من الدائرة الصغرى (الداخلية) والدائرة الكبيرة (الخارجية). ما مجموع مساحتي الدائرة الكبرى والدائرة الصغرى؟

(a) 6\pi (b) 4\sqrt{2}\pi (c) 8\pi (d) 9\sqrt{3}\pi (e) 12\pi

34. افترض أن قطعة نقود تم رميها 6 مرات، ما احتمال أن يكون عدد مرات ظهور النقش (الوجه) أكثر من عدد مرات ظهور الكتابة؟

(a) \frac{1}{2} (b) \frac{3}{8} (c) \frac{7}{16} (d) \frac{11}{32} (e) \frac{25}{64}
القسم الثاني

يحتوي هذا القسم على (10) أسئلة تمثل الإجابة الصحيحة على كل سؤال نقطتين، وكل إجابة خاطئة تخصم 0.5 نقطة.

26. افترض أن \(N = 11 + 11 + 11 + 1 + 1 \) على 11.
ما بقية قسمة N على 11؟

(a) 0 (b) 1 (c) 5 (d) 9 (e) 10

27. معطى أن القطع المكافئ في الشكل أدناه يقطع مع محور x عند النقاط $B(5,0)$ و $A(-1,0)$.
فرض أن T نقطة رأس القطع المكافئ. ما هي مساحة المثلث ATB؟

(ا) 18 (ب) 24 (ج) 27 (د) 30 (ه) 36

28. ما مجموع القيم الممكنة للمتغير a، بحيث يكون المقدار $|3a - 2|\geq 4$ أصغر ما يمكن؟

(ا) $\frac{6}{5}$ (ب) $\frac{3}{2}$ (ج) $\frac{7}{4}$ (د) $\frac{8}{5}$ (ه) 6

29. الرسم البياني أدناه يوضح سعر الفائدة مقابل مدة الاستثمار في بنك ما. إذا تم استثمار 5000 دولار في هذا البنك لمدة 3 سنوات، وتم حساب الفائدة سنوياً وإضافة الفائدة لرأس المال عند نهاية كل سنة، ما هو رصيد الحساب بعد 3 سنوات؟

(ا) 6,890 (ب) 7,165 (ج) 7,257 (د) 7,392 (ه) 7,463
22. في حالة

من عدد الركاب يرتدون نظارات طبية ومن بين هؤلاء الركاب ذوي النظارات الطبية منهم

إذا كانت الحافة تحتوي على 4 ركاب ذكور يرتدون نظارات طبية، كم راكب في الحافة لا يلبس

نظارات طبية؟

(a) 13 (b) 14 (c) 15 (d) 16 (e) 18

23. من الرسم البياني أدناه للدوتين

ما هي قيمة

؟

(a) 3 (b) 4 (c) 5 (d) 6 (e) 7

24. في الشكل الموضح أدناه، النقطة

هي مركز المجاندة للمثلث

معطى أن

و

و

و

و

حائزة النسبة

ما قيمة النسبة

؟

(a) \frac{17}{45} (b) \frac{16}{49} (c) \frac{1}{3} (d) \frac{14}{49} (e) \frac{13}{45}

25. ثلاثة لاعبين يرمون السهام على هدف. احتمال إصابة الهدف هي

، على التوالي، لكل من

الأقل مرة واحدة؟

(a) \frac{2}{5} (b) \frac{13}{15} (c) \frac{12}{15} (d) \frac{4}{5} (e) \frac{14}{15}
15. افترض أن \(\frac{372-9^2}{x} \) هو عدد صحيح، و \(x \) هو عدد أولي. ما القيمة العظمى الممكنة للمقدار 1 + \(9x^2 + 6x + 1 \)?

\[
(a) 49 \quad (b) 324 \quad (c) 576 \quad (d) 3600 \quad (e) 4900
\]

16. إذا كانت \(4x^3 + 3^x + 3 \) ، فما قيمة \(x \)?

\[
(a) 81 \quad (b) 54 \quad (c) 36 \quad (d) 27 \quad (e) 9
\]

17. أي من التالية ليس جزءاً للمعادلة 0 = 12 + 16 (؟)

\[
(a) -2 \quad (b) -1 \quad (c) 2 \quad (d) 3 \quad (e) 4
\]

18. في الشكل أدناه، هما نقاط منتصف لكل من \(BC \) و \(AD \) على التوالي. معنى أن: مساحة المنطقة (ABCD) ومساحة المنطقة (DEG) = 6cm² = (BGF) بوحدة \(\text{cm}^2 \)

\[
(a) 60 \quad (b) 50 \quad (c) 45 \quad (d) 40 \quad (e) 30
\]

19. قام رسام بنحتضب خليط من الألوان يزن 1960 جراماً باستخدام ثلاثة ألوان أساسية: أحمر \(R \) وأبيض \(W \) وأزرق \(Y \). معنى أن الكمية المطلوبة من هذه الألوان الثلاثة في الخليط تحقق النسب \(R \) و \(W \) وأزرق (W) على الگلهدة (R) مراماً يزيد اللون الأزرق عن اللون الأحمر في الخليط؟

\[
(a) 160 \quad (b) 200 \quad (c) 320 \quad (d) 640 \quad (e) 720
\]

20. تاريخ اليوم، مكتوب بصيغة DD/MM/YYYY هو 02/02/2020. تم تاريخ (ماضي، حاضر أو مستقبلي) يمكن أن يكتب بهذه الصيغة باستخدام الرقم 2 خمس مرات، والرقم 0 ثلاث مرات؟

\[
(a) 14 \quad (b) 21 \quad (c) 28 \quad (d) 42 \quad (e) 56
\]

21. افترض أن \(D = G + 3 \) و \(C = 7 \) ، \(A, B, C, D, E, F, G, H, I, J \) هو متسلسل لأعداد حقيقية. حيث أن 7 هي A, B, C, D, E, F, G, H, I, J بالإضافة إلى أن مجموع أي 4 حدود متتالية يساوي 40، ما هو مجموع؟

\[
(a) 10 \quad (b) 14 \quad (c) 17 \quad (d) 20 \quad (e) 23
\]
8. افترض أن \(a \) هو عدد أولي يحقق \(20 < a < 10 \). أي من التالية هو أكبر قيمة للمقدار: \(\frac{a+3}{a+5} \)?

(a) \(\frac{11}{12} \)
(b) \(\frac{10}{11} \)
(c) \(\frac{9}{10} \)
(d) \(\frac{8}{9} \)
(e) \(\frac{7}{8} \)

9. افترض أن \(x \) و \(y \) أعدادًا صحيحة حيث \(0 \leq y \leq 2 \) و \(2 < x \leq 5 \) ؛ ما أكبر قيمة للمقدار – \(5y \)?

(a) -15
(b) 0
(c) 15
(d) 30
(e) 33

\[4ax + 5y + 2 = 0 \quad (2x - 3)^2 + (y + 4)^2 = 0 \]

معطى أن \(0 \) ما قيمة؟

(a) 2
(b) 3
(c) 4
(d) 5
(e) 6

10. معطى أن 10 و 4 و 2 \(y \) ؛ أي من التالية هو الترتيب الصحيح لـ \(x \) و \(y \) و \(z \)?

(a) \(x < y < z \)
(b) \(y < x < z \)
(c) \(x < z < y \)
(d) \(y < z < x \)
(e) \(z < x < y \)

11. معطى أن 10 و 4 و 2 \(y \) ؛ أي من التالية يساوي المقدار \(\sqrt{x^2 - 3x + 2 + \sqrt{x^2 - 4x + 4}} \)?

(a) \(x \)
(b) \(-x + 2 \)
(c) \(x + 3 \)
(d) \(x - 2 \)
(e) \(-x \)

12. افترض أن \(x \) هو عدد حقيقي أقل من 2 ؛ أي من التالية يساوي المقدار: \(a \) ما قيمة؟

(a) \(\sqrt{2a} \)
(b) \(\sqrt{3a} \)
(c) \(2a \)
(d) \(3a \)
(e) \(a + \sqrt{2} \)

13. إذا كان \(\sqrt{6} \) بدالة، ما هي النسبة؟

(a) \(\sqrt{2a} \)
(b) \(2 \)
(c) \(3 \)
(d) \(4 \)
(e) \(5 \)

14. افترض أن \(S_1 \) هو شكل متساوي ال сторон و \(O \) هي مركز محور الدائرة لهذا الشكل. ومعطى أن \(ABCDEF \) هو شكل متساوي ال сторон و \(O \) هي مركز محور الدائرة لهذا الشكل. ومعطى أن

\[\frac{53}{52} \]

\[\frac{S_1}{S_2} \]

أداه، ما هي النسبة؟

(a) \(\frac{1}{3} \)
(b) \(\frac{1}{2} \)
(c) \(\frac{2}{5} \)
(d) \(\frac{3}{7} \)
(e) \(\frac{4}{11} \)

\(\Box \)
القسم الأول

يحتوي هذا القسم على (25) سؤالًا. تمنح الإجابة الصحيحة على كل سؤال نقطة واحدة، وكل إجابة خاطئة تخصم 0.25 نقطة.

1. ما قيمة
\(\frac{3 \times 4^{2020} - 2 \times 4^{2019}}{2 \times 4^{2020} - 3 \times 4^{2019}} \) ﻰﻠﻋ ﺎً ﻢﺴﻘﻟاً اﺬھ يﻮﺘﺤﯾ

(a) 0 (b) 1 (c) \(\frac{2}{3} \) (d) \(\frac{3}{2} \) (e) 2

2. افترض أن \(a \) و \(b \) و \(c \) هي أعداد موجبة صحيحة تحقق المعادلة
\(a + 2b = 3c \) و \(3a = 5c \)

ما قيمة \(\frac{a - b + c}{b} \)

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

3. معطى أن \(n = 5 \) هو عدد زوجي. أي الأعداد التالية هو عدد فردي دائمًا؟

(a) \(n^8 + n^9 \) (b) \(5n + 3 \) (c) \(n^2 + 2n^5 \) (d) \(2^n + n^6 + n^5 \) (e) \(4n^2 + 3n + 1 \)

4. يوجد 174 شرفاً من عصير التفاح و 252 شرفاً من عصير البرتقال في وعاءين مختلفين. هذه العصائر سيتم تعيينها في جزء من نفس الحجم بدون خلط العصائر. ما الحد الأدنى من الزجاجات المطلوبة؟

(a) 58 (b) 62 (c) 68 (d) 70 (e) 71

5. افترض أن \(\frac{8}{7} + \frac{9}{8} + \frac{10}{9} - \frac{9}{10} \) أي من التالية يساوي \(x = \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} \)

(a) \(x + 1 \) (b) \(x + 2 \) (c) \(x + 3 \) (d) \(x + 4 \) (e) \(x + 5 \)

6. ما عدد المثلثات الموجودة في الشكل التالي؟

(a) 18 (b) 20 (c) 22 (d) 24 (e) 26

7. افترض أن \(x \) هو عدد حقيقي يحقق المعادلة 100 = \((x+1)(x+4) = 100 \). ما هي قيمة (6)

(a) 85 (b) 90 (c) 95 (d) 100 (e) 105
مسابقة يوم باي في الرياضيات

قواعد المسابقة

• يتكون هذا الاختبار من 40 سؤال متعدد الاختيارات. لكل سؤال إجابات E, D, C, B, A ذات رموز. إجابة واحدة فقط هي الإجابة الصحيحة.

• ضع علامًا على إجابتك لكل مسألة في ورقة الإجابة المقدمة. عند كل سؤال، تون الدائرة المقابلة للإجابة المختارة. انسحب بالإكتمال أي اختلاف أو علامات أخرى سيتم احتساب الإجابات المعلمة بشكل صحيح فقط على ورقة الإجابة.

الدرجات: هناك ثلاثة أقسام في هذا الاختبار.

- القسم الأول ويكون من 25 سؤال، يعادل كل منهم درجة واحدة
- القسم الثاني ويكون من 10 أسئلة، يعادل كل منها درجتين
- القسم الثالث ويكون من 5 أسئلة، يعادل كل منها ثلاث درجات

الإجابة الصحيحة للسؤال تحتسب درجة صامدة. أما الإجابة الخاطئة تحمل في طباقتها خصم 25% من درجة السؤال (أي أن هناك خصم 0.25 للإجابات الخاطئة في القسم الأول، خصم 0.5 للإجابات الخاطئة في القسم الثاني، و خصم 0.75 للإجابات الخاطئة في القسم الثالث). أما الأسئلة التي يتم ترجمتها بدون إجابة، فلا تحتسب لها درجات.

لا يسمح للمتسابقين بالرجوع إلى الكتب أو المندسرين أو مشوارة الآخرين (باستثناء أعضاء الفريق). ولا باستخدام الأجهزة الإلكترونية (بما في ذلك الألات الحاسبة، الهواتف المحمولة، الخ) أو أي موارد أخرى خلال الاختبار.

• الأشكال غير مطابقة بالضرورة لمقياس الرسم الأصلي.

قبل البدء بالاختبار، يرجى التأكد من صيغتة اسم مدرستك، اسم فريقك (إذا كان لديك واحدًا) وأسماء جميع أعضاء الفريق على ورقة الإجابة.

• لديك 90 دقيقة لإتمام الاختبار.

• في نهاية الوقت (90 دقيقة)، على سهل فريق أن يقدم ورقة إجابة واحدة.
Fifth Annual Pi Day Mathematics Competition

Preliminary Round Question Booklet

2020