Carnegie Mellon University Qatar

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{3.141592653589793238462643383279 502884197163339375105420974944523
07816406286208998628034825342117067}}

\hline \& \& \&

\hline \multirow[t]{2}{*}{${ }_{928}^{981}$} \& ${ }_{48086}$ \& 5132 \&

\hline \& 06647 \& 09314 \&

\hline \multirow[t]{2}{*}{46
17} \& 09550 \& 58223 \&

\hline \& 2535\% \& 4081 \&

\hline \multirow[t]{2}{*}{} \& 2848 \& 1117 \&

\hline \& 4502 \& ${ }^{8410}$ \&

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{$\begin{array}{r}2701 \\ 21105 \\ \hline 10205\end{array}$}} \& 9365 \&

\hline \& \& 55964 \&

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{46223
9303}} \& 48954 \&

\hline \& \& 81964 \&

\hline \multicolumn{2}{|r|}{9303
42888} \& 10975 \&

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{${ }^{665893}$}} \& 34461 \&

\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{78678}} \& 48233 \&

\hline \& \& 31653 \& 71

\hline \multicolumn{2}{|r|}{${ }_{2019091}$} \& 456485 \& 66

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{${ }_{2133936} 923460{ }^{2}$}} \& 486104 \&

\hline \& \& 072602 \&

\hline \multicolumn{2}{|r|}{2133936
3724589} \& 00660

1520 \&

\hline \multicolumn{2}{|r|}{(1724987} \& 1520 \&

\hline
\end{tabular}

Pi Day Mathematics Competition

Final Round 2019

Question 1

While earlier attempts to calculate π depended on polygonal approximations, more modern calculations use infinite series. One such series is the Madhava-Leibniz series:

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4}
$$

What is the value of the following, related series

$$
\frac{1}{1 \cdot 3}+\frac{1}{5 \cdot 7}+\frac{1}{9 \cdot 11}+\cdots ?
$$

Question 2

What is the sum of all positive integers a which satisfy the condition $\frac{1}{15}<\frac{a}{10}<\frac{1}{3}$?

Question 3

How many integers x satisfy both of the two conditions

$$
|3 x+8|=3 x+8 \quad \text { and } \quad|2 x-5|=-2 x+5 ?
$$

Question 4

Suppose we are given that $4^{x}-4^{x-1}=24$. What is the value of $x^{5 / x}$?

Question 5

The parabola $y=a x^{2}+b x+c$ and the line $y=-2 x+4$ have common x and y intercepts (as shown in the figure). What is the value of the sum $a+b+c$?

Question 6

Let $A B C$ and $F E D$ be right triangles. It is given that $|A B|=12$ $\mathrm{cm},|B C|=5 \mathrm{~cm},|F E|=16 \mathrm{~cm}$ and $|D E|=12 \mathrm{~cm}$. What is the difference $|D C|-|A F|$?

Question 7

If $f(x-3)=(2 n-1) x+2 m+5$ is the identity function, what is the value of $n-m$?

Question 8

Find an integer which is equal to the expression

$$
\left(\frac{0.003}{0.3}-\frac{0.0012}{0.12}+\frac{0.318}{31.8}\right)^{-1}
$$

Question 9

What is the remainder when $3^{1}+3^{2}+3^{3}+\cdots+3^{2019}$ is divided by 10 ?

Question 10

In the following figure, half-circles with diameters $|A B|,|A E|$, and $|E B|$ are given. If $|A C|=|C E|=3 \mathrm{~cm}$ and $|E D|=|D B|=1 \mathrm{~cm}$ then what is the area of the shaded (indicated) region?

Question 11

Let a, b, c, d, e be distinct integers such that

$$
(7-a)(7-b)(7-c)(7-d)(7-e)=75
$$

What is $a+b+c+d+e ?$

Question 12

We have three water pumps: A, B, and C.
It takes 6 hours for pump A, used alone, to fill a swimming pool.
Pump B used alone takes 8 hours to fill the same pool.
Pump C is set up to drain/empty the pool. If the above pool is completely full, it takes pump C 12 hours to completely drain it.
Suppose pumps A and B are being used to fill the pool. When the pool is exactly half-full, pump C is turned on by accident. How long will it take to fill the remaining half with all pumps working?

Question 13

Let $D A B$ and $B C D$ be right triangles. It is given that $|A D|=|D C|,|B E|=18 \mathrm{~cm},|E C|=6 \mathrm{~cm}$ and $|A F|=12 \mathrm{~cm}$. What is the length of $|F E|=x$ in cm ?

Question 14

When the mean, median, and mode of the list of integers

$$
11,3,5,6,3,3, x
$$

are arranged in increasing order, they form an arithmetic progression.
What is the sum of all possible values of x ?

Question 15

Two six-sided dice are fair in the sense that each face is equally likely to turn up. However, one of the dice has the 4 replaced by 3 and the other die has the 3 replaced by 4 . When these dice are rolled, what is the probability that the sum is an odd number?

Question 16

A magic square is a square grid such that the sum of entries in each row, column, and diagonal is equal. This common sum is called the magic constant of the magic square.
The 3×3 grid below is a magic square with some entries missing (and replaced by the letters a, b, c, d, e, f).
Determine its magic constant.

