Carnegie Mellon University Qatar

		7932384626432	
		37510582097494	
		86280348253423	
9821	48086	5132	
\$23	06647		
46	09550	56223	
17	25359	4081	
	2848	1117	
	4502	8410	
	2701	9385	
	21105	55964	
	46229	48954	
	9303	01964	
	4288	10975	
66593		34461	
284756		48233	
	18678	31652	71
21	19091	456485	66
2234603		455104543	26640
2133936		0726024914127	
3724587		00660631558	
917488		152092096	

Pi Day Mathematics Competition

Final Round 2019

While earlier attempts to calculate π depended on polygonal approximations, more modern calculations use infinite series. One such series is the *Madhava-Leibniz* series:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

What is the value of the following, related series

$$\frac{1}{1\cdot 3} + \frac{1}{5\cdot 7} + \frac{1}{9\cdot 11} + \cdots?$$

What is the sum of all positive integers *a* which satisfy the condition
$$\frac{1}{15} < \frac{a}{10} < \frac{1}{3}$$
?

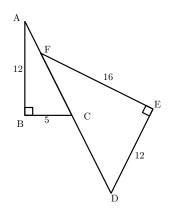
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

How many integers x satisfy both of the two conditions


$$|3x+8| = 3x+8$$
 and $|2x-5| = -2x+5?$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶


Suppose we are given that $4^{x} - 4^{x-1} = 24$. What is the value of $x^{5/x}$?

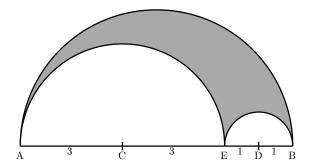
The parabola $y = ax^2 + bx + c$ and the line y = -2x + 4 have common x and y intercepts (as shown in the figure). What is the value of the sum a + b + c?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Let ABC and FED be right triangles. It is given that |AB| = 12 cm, |BC| = 5 cm, |FE| = 16 cm and |DE| = 12 cm. What is the difference |DC| - |AF|?

If f(x-3) = (2n-1)x + 2m + 5 is the identity function, what is the value of n - m?

Find an integer which is equal to the expression


$$\left(\frac{0.003}{0.3} - \frac{0.0012}{0.12} + \frac{0.318}{31.8}\right)^{-1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is the remainder when $3^1 + 3^2 + 3^3 + \cdots + 3^{2019}$ is divided by 10?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

In the following figure, half-circles with diameters |AB|, |AE|, and |EB| are given. If |AC| = |CE| = 3 cm and |ED| = |DB| = 1 cm then what is the area of the shaded (indicated) region?

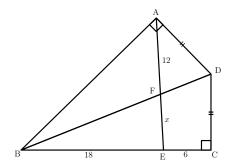
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let a, b, c, d, e be distinct integers such that

$$(7-a)(7-b)(7-c)(7-d)(7-e) = 75.$$

What is a + b + c + d + e?

We have three water pumps: A, B, and C.


It takes 6 hours for pump A, used alone, to fill a swimming pool.

Pump B used alone takes 8 hours to fill the same pool.

Pump C is set up to drain/empty the pool. If the above pool is completely full, it takes pump C 12 hours to completely drain it.

Suppose pumps A and B are being used to fill the pool. When the pool is exactly half-full, pump C is turned on by accident. How long will it take to fill the remaining half with all pumps working?

Let *DAB* and *BCD* be right triangles. It is given that |AD| = |DC|, |BE| = 18 cm, |EC| = 6 cm and |AF| = 12 cm. What is the length of |FE| = x in cm?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

When the mean, median, and mode of the list of integers

```
11, 3, 5, 6, 3, 3, x
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

are arranged in increasing order, they form an arithmetic progression.

What is the sum of all possible values of x?

Two six-sided dice are fair in the sense that each face is equally likely to turn up. However, one of the dice has the 4 replaced by 3 and the other die has the 3 replaced by 4. When these dice are rolled, what is the probability that the sum is an odd number?

A *magic square* is a square grid such that the sum of entries in each row, column, and diagonal is equal. This common sum is called the *magic constant* of the magic square.

The 3×3 grid below is a magic square with some entries missing (and replaced by the letters a, b, c, d, e, f).

Determine its magic constant.

15	a	b
c	d	e
20	12	f