The story of π
and related puzzles

Narrator: Niraj Khare
Carnegie Mellon University Qatar

Being with math is being with the truth and eternity!

Oct, 30, 2017
• The story starts in ancient Egypt and Babylon about 4000 years ago!

• The Rihnd Papyrus of Ahmes from 1650 BC gives approximation $\pi \approx \frac{4(64)}{81} = 3.16049$.
The story starts in ancient Egypt and Babylon about 4000 years ago!

The Rihnd Papyrus of Ahmes from 1650 BC gives approximation $\pi \approx \frac{4(64)}{81} = 3.16049$.

Late 5th century BCE, Antiphone and Baryson of Heraclea inscribe and circumscribe regular polygons to a circle.
The story starts in ancient Egypt and Babylon about 4000 years ago!

The Rihnd Papyrus of Ahmes from 1650 BC gives approximation $\pi \approx \frac{4(64)}{81} = 3.16049$.

Late 5th century BCE, Antiphone and Baryson of Heraclea inscribe and circumscribe regular polygons to a circle.

Around 450 BCE, Anaxagoras proposes ‘squaring the circle’ from a prison! The puzzle was finally ‘settled’ in 1882 AD.
The story starts in ancient Egypt and Babylon about 4000 years ago!

The Rihnd Papyrus of Ahmes from 1650 BC gives approximation \(\pi \approx \frac{4(64)}{81} = 3.16049 \).

Late 5th century BCE, Antiphone and Baryson of Heraclea inscribe and circumscribe regular polygons to a circle.

Around 450 BCE, Anaxagoras proposes ‘squaring the circle’ from a prison! The puzzle was finally ‘settled’ in 1882 AD.

Around 250 BC, Archimedes proves that \(3.1408 < 3\frac{10}{71} < \pi < 3\frac{1}{7} \approx 3.1428 \).
The story starts in ancient Egypt and Babylon about 4000 years ago!

The Rihnd Papyrus of Ahmes from 1650 BC gives approximation $\pi \approx \frac{4(64)}{81} = 3.16049$.

Late 5th century BCE, Antiphone and Baryson of Heraclea inscribe and circumscribe regular polygons to a circle.

Around 450 BCE, Anaxagoras proposes ‘squaring the circle’ from a prison! The puzzle was finally ‘settled’ in 1882 AD.

Around 250 BC, Archimedes proves that $3.1408 < 3\frac{10}{71} < \pi < 3\frac{1}{7} \approx 3.1428$.
The story starts in ancient Egypt and Babylon about 4000 years ago!

The Rihnd Papyrus of Ahmes from 1650 BC gives approximation $\pi \approx \frac{4(64)}{81} = 3.16049$.

Late 5th century BCE, Antiphone and Baryson of Heraclea inscribe and circumscribe regular polygons to a circle.

Around 450 BCE, Anaxagoras proposes ‘squaring the circle’ from a prison! The puzzle was finally ‘settled’ in 1882 AD.

Around 250 BC, Archimedes proves that $3.1408 < 3\frac{10}{71} < \pi < 3\frac{1}{7} \approx 3.1428$.
Time to pause and ponder

Are we on solid ground?

Is the ratio of circumference to its diameter for a circle is always a constant?
Are we on solid ground?

Is the ratio of circumference to its diameter for a circle is always a constant?

\[
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
\]
Are we on solid ground?

Is the ratio of circumference to its diameter for a circle is always a constant?

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$
“Cosine rule” but Pythagoras truly rules!

The oldest, shortest words “yes” and “no” are those which require the most thought. - *Pythagoras*

Cosine rule

\[c^2 - (b - a \cos(\theta))^2 = a^2 - (a \cos(\theta))^2 \]

\[\Rightarrow c^2 = (b - a \cos(\theta))^2 + a^2 \sin^2(\theta) \]

\[\Rightarrow c^2 = b^2 + a^2 - 2ab \cos(\theta) \]
Angle subtended by a side at the center of a regular \(n \)-gon \(\frac{2\pi}{n} \)

\[
\sqrt{r^2 + r^2 - 2r^2 \cos \left(\frac{2\pi}{n} \right)} = r\sqrt{2} \sqrt{1 - \cos \left(\frac{2\pi}{n} \right)} = r\sqrt{2} \sqrt{1 - \left(1 - 2\sin^2 \left(\frac{\pi}{n} \right) \right)} = 2r\sin \left(\frac{\pi}{n} \right)
\]

\[
P_n = \frac{n \cdot 2r \cdot \sin \left(\frac{\pi}{n} \right)}{2r} = n \sin \left(\frac{\pi}{n} \right)
\]

\[
\Rightarrow \lim_{n \to \infty} \frac{P_n}{2r} = \lim_{n \to \infty} \frac{\pi \sin \left(\frac{\pi}{n} \right)}{\frac{\pi}{n}} = \pi \lim_{n \to \infty} \frac{\sin \left(\frac{\pi}{n} \right)}{\frac{\pi}{n}}
\]
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.

• Towards the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.

• Towrds the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.

• Some mathematician started using inaccurate values such as $\sqrt{10} \approx 3.1622$ and for centuries it continued in India and other places!
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.

• Towards the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.

• Some mathematician started using inaccurate values such as $\sqrt{10} \approx 3.1622$ and for centuries it continued in India and other places!

• Madhava (1340 c.1425) of Sangamagrama (India) found π accurately to 11 decimal places.
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.

• Towards the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.

• Some mathematician started using inaccurate values such as $\sqrt{10} \approx 3.1622$ and for centuries it continued in India and other places!

• Madhava (1340 c.1425) of Sangamagrama (India) found π accurately to 11 decimal places.

• Jamshid al-Kashi had calculated π to an accuracy of 16 decimal digits in 1424 AD.
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.
• Towards the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.
• Some mathematician started using inaccurate values such as $\sqrt{10} \approx 3.1622$ and for centuries it continued in India and other places!
• Madhava (1340 c.1425) of Sangamagrama (India) found π accurately to 11 decimal places.
• Jamshid al-Kashi had calculated π to an accuracy of 16 decimal digits in 1424 AD.
• In 263 AD, Liu Hui of China using regular inscribed polygons with sides 12 to 192 showed that $3.14159 < \pi$.

• Towrds the end of 5th century AD, Tsu Chung-chih and Tsu keng chih use regular polygons with 24,576 sides to show $3.1415926 < \pi < 3.1415927$.

• Some mathematician started using inaccurate values such as $\sqrt{10} \approx 3.1622$ and for centuries it continued in India and other places!

• Madhava (1340 c.1425) of Sangamagrama (India) found π accurately to 11 decimal places.

• Jamshid al-Kashi had calculated π to an accuracy of 16 decimal digits in 1424 AD.
• Ludolph Van Ceulen using archimedean method with 500 million sides calculated π calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone.
Ludolph Van Ceulen using archimedean method with 500 million sides calculated π calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone.

In 1647, the ratio of circumference of a circle to its diameter gets its name and symbol π by William Oughtred. Made popular by Leonhard Euler.
• Ludolph Van Ceulen using archimedean method with 500 million sides calculated π calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone.

• In 1647, the ratio of circumference of a circle to its diameter gets its name and symbol π by William Oughtred. Made popular by Leonhard Euler.

• Time to pause and ponder (II). Ludolph Van Ceulen must be fictional!
Ludolph Van Ceulen using archimedes' method with 500 million sides calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone.

In 1647, the ratio of circumference of a circle to its diameter gets its name and symbol π by William Oughtred. Made popular by Leonhard Euler.

Time to pause and ponder (II). Ludolph Van Ceulen must be fictional!
Ludolph van Ceulen
Dutch-German mathematician
Ludolph van Ceulen was a German-Dutch mathematician from Hildesheim. He emigrated to the Netherlands. Wikipedia:

Born:
January 28, 1540, Hildesheim, Germany

Died:
December 31, 1610, Leiden, Netherlands

Known for: pi

Institution: Leiden University

Notable student: Willebrord Snellius
Archimedes’ approximation of π: Angle bisector

Angle bisector and ratio of sides

$$\frac{AC}{AB} = \frac{CD}{DB}$$
Archimedes’ approximation of π (I): Upper bound

Archimedes' Approximation of π

\[
\frac{OC}{OA} = \frac{CD}{AD}
\]

\[
\frac{OC}{OA} + \frac{OA}{OA} = \frac{CD + AD}{AD} = \frac{AC}{AD}
\]

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\sqrt{\frac{O A^2 + A D^2}{A D^2}} = \sqrt{\frac{O D^2}{A D^2}} = \frac{O D}{A D}
\]
Archimedes’ approximation of π (II)
Archimedes’ iteration

$AC' = \text{Half of the length of a circumscribing regular 6-gon}$

$$\frac{OA}{AC'} = \cot \left(\frac{\pi}{6} \right) = \frac{1}{\tan \left(\frac{\pi}{6} \right)} = \sqrt{3} > \frac{265}{153}$$

$$\frac{OC'}{AC'} = \frac{1}{\sin \left(\frac{\pi}{6} \right)} = 2 = \frac{306}{153}$$

$$\frac{OA}{AD} = \frac{OC + OA}{AC} > \frac{265}{153} + \frac{306}{153} = \frac{571}{153}$$
Archimedes’ approximation of π (III)
Repeated use of Archimedes’ iteration

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\Rightarrow \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]
Archimedes’ approximation of π (III)
Repeated use of Achimedes’ iteration

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD} \\
\Rightarrow \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE} \\
\Rightarrow \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]
Archimedes’ approximation of π (III)
Repeated use of Archimedes’ iteration

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]
\[
\Rightarrow \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]
\[
\Rightarrow \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]
\[
\Rightarrow \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π (III)
Repeated use of Achimedes’ iteration

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD} \\
\Rightarrow \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE} \\
\Rightarrow \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF} \\
\Rightarrow \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π (III)
Repeated use of Achimedes’ iteration

\[
\frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\Rightarrow \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\Rightarrow \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\Rightarrow \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π (III)(b)

Pythagoras comes to rescue!

\[
\frac{571}{153} < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\frac{591\frac{1}{8}}{153} < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD}
\]
Archimedes’ approximation of π (III)(b)

Pythagoras comes to rescue!

\[
\begin{align*}
\frac{571}{153} & < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD} \\
\frac{591}{153} & < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD} \\
\frac{1162}{153} & < \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\end{align*}
\]
Archimedes’ approximation of \(\pi \) (III)(b)

Pythagoras comes to rescue!

\[
\frac{571}{153} < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\frac{591\frac{1}{8}}{153} < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD}
\]

\[
\frac{1162\frac{1}{8}}{153} < \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]

\[
\frac{1172\frac{1}{8}}{153} + \frac{1162\frac{1}{8}}{153} = \frac{2334\frac{1}{4}}{153} < \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]
Archimedes’ approximation of π (III)(b)

Pythagoras comes to rescue!

\[
\frac{571}{153} < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\frac{591\frac{1}{8}}{153} < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD}
\]

\[
\frac{1162\frac{1}{8}}{153} < \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]

\[
\frac{1172\frac{1}{8}}{153} + \frac{1162\frac{1}{8}}{153} = \frac{2334\frac{1}{4}}{153} < \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]

\[
\frac{2339\frac{1}{4}}{153} + \frac{2334\frac{1}{4}}{153} = \frac{4673\frac{1}{2}}{153} < \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π (III)(b)

Pythagoras comes to rescue!

\[
\frac{571}{153} < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\frac{591\frac{1}{8}}{153} < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD}
\]

\[
\frac{1162\frac{1}{8}}{153} < \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]

\[
\frac{1172\frac{1}{8}}{153} + \frac{1162\frac{1}{8}}{153} = \frac{2334\frac{1}{4}}{153} < \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]

\[
\frac{2339\frac{1}{4}}{153} + \frac{2334\frac{1}{4}}{153} = \frac{4673\frac{1}{2}}{153} < \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π (III)(b)
Pythagoras comes to rescue!

\[
\frac{571}{153} < \frac{OC}{AC} + \frac{OA}{AC} = \frac{OA}{AD}
\]

\[
\frac{591 \frac{1}{8}}{153} < \sqrt{\left(\frac{(571)^2 + (153)^2}{(153)^2}\right)} < \frac{OD}{AD}
\]

\[
\frac{1162 \frac{1}{8}}{153} < \frac{OD}{AD} + \frac{OA}{AD} = \frac{OA}{AE}
\]

\[
\frac{1172 \frac{1}{8}}{153} + \frac{1162 \frac{1}{8}}{153} = \frac{2334 \frac{1}{4}}{153} < \frac{OE}{AE} + \frac{OA}{AE} = \frac{OA}{AF}
\]

\[
\frac{2339 \frac{1}{4}}{153} + \frac{2334 \frac{1}{4}}{153} = \frac{4673 \frac{1}{2}}{153} < \frac{OF}{AF} + \frac{OA}{AF} = \frac{OA}{AG}
\]
Archimedes’ approximation of π: upper bound

As $\frac{OA}{AG} > \frac{4673\frac{1}{2}}{153}$, $\frac{AG}{OA} < \frac{153}{4673\frac{1}{2}}$. Thus,

$$\frac{\text{Perimeter of the circle}}{\text{diameter}} < \frac{96 \times (2 \times \text{length of AG})}{2 \times \text{length of OA}}$$
As \(\frac{OA}{AG} > \frac{4673 \frac{1}{2}}{153} \), \(\frac{AG}{OA} < \frac{153}{4673 \frac{1}{2}} \). Thus,

\[
\frac{\text{Perimeter of the circle}}{\text{diameter}} < \frac{96 \times (2 \times \text{length of } AG)}{2 \times \text{length of } OA} < \frac{96 \times 153}{4673 \frac{1}{2}}
\]
Archimedes’ approximation of π: upper bound

As $\frac{OA}{AG} > \frac{4673\frac{1}{2}}{153}$, $\frac{AG}{OA} < \frac{153}{4673\frac{1}{2}}$. Thus,

\[
\frac{\text{Perimeter of the circle}}{\text{diameter}} < \frac{96 \times 153}{2 \times \text{length of OA}} < \frac{14688}{4673\frac{1}{2}} = 3 + \frac{667\frac{1}{2}}{4673\frac{1}{2}}
\]
Archimedes’ approximation of \(\pi \): upper bound

As \(\frac{OA}{AG} > \frac{4673\frac{1}{2}}{153} \), \(\frac{AG}{OA} < \frac{153}{4673\frac{1}{2}} \). Thus,

\[
\frac{\text{Perimeter of the circle}}{\text{diameter}} < \frac{96 \text{ times (2 times the length of } AG)}{2 \text{ times length of } OA} < \frac{96 \times 153}{4673\frac{1}{2}} = \frac{14688}{4673\frac{1}{2}} = 3 + \frac{667\frac{1}{2}}{4673\frac{1}{2}} < 3 + \frac{1}{7}
\]
Archimedes’ approximation of π: upper bound

As $\frac{OA}{AG} > \frac{4673\frac{1}{2}}{153}$, $\frac{AG}{OA} < \frac{153}{4673\frac{1}{2}}$. Thus,

$$\frac{\text{Perimeter of the circle}}{\text{diameter}} < \frac{96 \times (2 \times \text{length of AG})}{2 \times \text{length of OA}}$$

$$< \frac{96 \times 153}{4673\frac{1}{2}}$$

$$= \frac{14688}{4673\frac{1}{2}}$$

$$= 3 + \frac{667\frac{1}{2}}{4673\frac{1}{2}}$$

$$< 3 + \frac{1}{7}$$
Archimedes’ approximation of π: Lower bound
Archimedes’ approximation of \(\pi \): Lower bound

\[
\frac{Bt}{Ct} = \frac{AB}{AC}
\]

\[
\frac{AC}{Ct} = \frac{BD}{Dt} = \frac{AD}{BD}
\]

\[
\frac{AD}{BD} = \frac{AC}{Ct} = \frac{AB + AC}{Bt + Ct}
\]
• French mathematician Viete (1540–1603) and later in 1650 John Wallis found infinite products for π.

• By 1682, James Gregory and Leibniz found a famous “useless” series:

\[\arctan(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + \cdots. \]
• French mathematician Viete (1540–1603) and later in 1650 John Wallis found infinite products for π.
• By 1682, James Gregory and Leibniz found a famous “useless” series:

$$\arctan(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + \cdots.$$
• French mathematician Viete (1540–1603) and later in 1650 John Wallis found infinite products for π.

• By 1682, James Gregory and Leibniz found a famous “useless” series:

\[
\arctan(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + \cdots.
\]

\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \cdots.
\]
• French mathematician Viete (1540–1603) and later in 1650 John Wallis found infinite products for \(\pi\).

• By 1682, James Gregory and Leibniz found a famous “useless” series:

\[
\arctan(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + \cdots.
\]

\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \cdots.
\]
• French mathematician Viete (1540–1603) and later in 1650 John Wallis found infinite products for π.

• By 1682, James Gregory and Leibniz found a famous “useless” series:

$$\arctan(t) = t - \frac{t^3}{3} + \frac{t^5}{5} - \frac{t^7}{7} + \frac{t^9}{9} + \cdots.$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \cdots.$$
Time line III (b): series expressions for π

- Useless for 10000 terms are required to get four accurate digits! To compute 100 digits "you need to add up more terms than there are particles in the universe" [Blanter, page 42].

- In 1706, an English professor of Astronomy, John Machin using $\arctan(x) + \arctan(y) = \arctan(\frac{x+y}{1-xy})$ found:
Time line III (b): series expressions for π

- Useless for 10000 terms are required to get four accurate digits! To compute 100 digits "you need to add up more terms than there are particles in the universe" [Blanter, page 42].

- In 1706, an English professor of Astronomy, John Machin using $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$ found:

\[
\frac{\pi}{4} = \arctan\left(\frac{120}{119}\right) - \arctan\left(\frac{1}{239}\right) = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).
\]
Time line III (b): series expressions for π

- Useless for 10000 terms are required to get four accurate digits! To compute 100 digits “you need to add up more terms than there are particles in the universe” [Blanter, page 42].

- In 1706, an English professor of Astronomy, John Machin using $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$ found:

 $\frac{\pi}{4} = \arctan\left(\frac{120}{119}\right) - \arctan\left(\frac{1}{239}\right) = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$.

- $\frac{\pi}{4} = 4 \left(\frac{1}{5} - \frac{1}{3(5)^3} + \frac{1}{5(5)^5} - \frac{1}{7(5)^7} + \cdots\right)$
 $\quad - \left(\frac{1}{239} - \frac{1}{3(239)^3} + \frac{1}{5(239)^5} - \frac{1}{7(239)^7} + \cdots\right)$.
Useless for 10000 terms are required to get four accurate digits! To compute 100 digits "you need to add up more terms than there are particles in the universe" [Blanter, page 42].

In 1706, an English professor of Astronomy, John Machin using $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$ found:

$$\frac{\pi}{4} = \arctan\left(\frac{120}{119}\right) - \arctan\left(\frac{1}{239}\right) = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).$$

$$\frac{\pi}{4} = 4 \left(\frac{1}{5} - \frac{1}{3(5)^3} + \frac{1}{5(5)^5} - \frac{1}{7(5)^7} + \cdots\right) - \left(\frac{1}{239} - \frac{1}{3(239)^3} + \frac{1}{5(239)^5} - \frac{1}{7(239)^7} + \cdots\right).$$
Using the above formula Machin could calculate π accurately till 100 places by hand!

Using the same above formula many mathematicians for next 150 years found more and more digits of π.

In 1873, William Shanks used the formula to calculate 707 digits of which only the first 527 were correct. [Berggren, page 627]

In 1761 to 1776, Lambert and Legendre proved that π is not a ratio of two integers. [Cajori, page 246]

In 1882, Ferdinand von Lindemann proved transcendence of π (i.e., squaring the circle is impossible). [Berggren, page 407]
• Using the above formula Machin could calculate π accurately till 100 places by hand!

• Using the same above formula many mathematicians for next 150 years found more and more digits of π.

• In 1873, William Shanks used the formula to calculate 707 digits of which only the first 527 were correct. [Berggren, page 627]
Using the above formula Machin could calculate π accurately till 100 places by hand!

Using the same above formula many mathematicians for next 150 years found more and more digits of π.

In 1873, William Shanks used the formula to calculate 707 digits of which only the first 527 were correct. [Berggren, page 627]

In 1761 to 1776, Lambert and Legendre proved that π is not a ratio of two integers. [Cajori, page 246]
• Using the above formula Machin could calculate π accurately till 100 places by hand!
• Using the same above formula many mathematicians for next 150 years found more and more digits of π.
• In 1873, William Shanks used the formula to calculate 707 digits of which only the first 527 were correct. [Berggren, page 627]
• In 1761 to 1776, Lambert and Legendre proved that π is not a ratio of two integers. [Cajori, page 246]
• In 1882, Ferdinand von Lindemann proved transcendence of π (i.e., squaring the circle is impossible). [Berggren, page 407]
• Using the above formula Machin could calculate π accurately till 100 places by hand!
• Using the same above formula many mathematicians for next 150 years found more and more digits of π.
• In 1873, William Shanks used the formula to calculate 707 digits of which only the first 527 were correct. [Berggren, page 627]
• In 1761 to 1776, Lambert and Legendre proved that π is not a ratio of two integers. [Cajori, page 246]
• In 1882, Ferdinand von Lindemann proved transcendence of π (i.e., squaring the circle is impossible). [Berggren, page 407]
By 1949 using hand calculations and toil of many years, we knew first 1000 digits correctly!

In 1949 the ENIAC (Electronic, Numerical, Intrigrator and Calculator) was built that calculated the first 2037 digits of π in less than 70 hours! [Beckmann, page 180]
By 1949 using hand calculations and toil of many years, we knew first 1000 digits correctly!

In 1949 the ENIAC (Electronic, Numerical, Intrigrator and Caculator) was built that calculated the first 2037 digits of π in less than 70 hours! [Beckmann, page 180]

Now using super computers and faster algorithms π is known over few trillion digits.
By 1949 using hand calculations and toil of many years, we knew first 1000 digits correctly!

In 1949 the ENIAC (Electronic, Numerical, Intrigrator and Caculator) was built that calculated the first 2037 digits of π in less than 70 hours! [Beckmann, page 180]

Now using super computers and faster algorithms π is known over few trillion digits.
• Just 39 decimal places would be enough to compute the circumference of a circle surrounding the known universe to within the radius of hydrogen atom. [Berggren, 656]

• At present time the only tangible application of all those digits is to test the computers and computer chips for bugs. [The history of pi by Devid Wilson]
• Just 39 decimal places would be enough to compute the circumference of a circle surrounding the known universe to within the radius of hydrogen atom. [Berggren, 656]
• At present time the only tangible application of all those digits is to test the computers and computer chips for bugs. [The history of pi by Devid Wilson]
• To quench the curiosity and to test if the given digits are from π.
• Just 39 decimal places would be enough to compute the circumference of a circle surrounding the known universe to within the radius of hydrogen atom. [Berggren, 656]

• At present time the only tangible application of all those digits is to test the computers and computer chips for bugs. [The history of pi by Devid Wilson]

• To quench the curiosity and to test if the given digits are from π.
Viete-Wallis series (I): found infinite products for π

$$\sin(x) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$

$$= 2^2\sin\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2^2}\right)$$
Viete-Wallis series (I): found infinite products for π

$$\sin(x) = 2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)$$

$$\quad = 2^2 \sin \left(\frac{x}{2^2}\right) \cos \left(\frac{x}{2}\right) \cos \left(\frac{x}{2^2}\right)$$

[n-times application yields]
Viete-Wallis series (I): found infinite products for π

\[\sin(x) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \]
\[= 2^2 \sin\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right) \]

[n-times application yields]

\[\vdots \]
\[= 2^n \sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right) \cdots \cos\left(\frac{x}{2^n}\right) \]
Viete-Wallis series (I): found infinite products for π

\[
\sin(x) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)
\]
\[
= 2^2\sin\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)
\]

[n-times application yields]

\[
\vdots
\]
\[
= 2^n\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)\cdots\cos\left(\frac{x}{2^n}\right)
\]

\[
\Rightarrow \lim_{n\to\infty} \frac{\sin(x)}{x} = \lim_{n\to\infty} \frac{\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)\cdots\cos\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}
\]
Viete-Wallis series (I): found infinite products for π

\[
\sin(x) = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = 2^2\sin\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)
\]

[n-times application yields]

\[
\vdots
\]

\[
= 2^n\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)\cdots\cos\left(\frac{x}{2^n}\right)
\]

\[
\Rightarrow \lim_{n \to \infty} \frac{\sin(x)}{x} = \lim_{n \to \infty} \frac{\sin\left(\frac{x}{2^n}\right)\cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)\cdots\cos\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}
\]
As \(\lim_{t \to 0} \frac{\sin(t)}{t} = 1 \), we get

\[
\frac{\sin(x)}{x} = \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{2^2}\right) \cos\left(\frac{x}{2^3}\right) \cdots
\]

Using \(\cos(\theta) = \sqrt{\frac{1+\cos(2\theta)}{2}} \) and the above infinite product at \(x = \frac{\pi}{2} \),
Viete-Wallis series (II): found infinite products for π

As $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$, we get

$$\frac{\sin(x)}{x} = \cos\left(\frac{x}{2}\right)\cos\left(\frac{x}{2^2}\right)\cos\left(\frac{x}{2^3}\right) \cdots$$

Using $\cos(\theta) = \sqrt{\frac{1 + \cos(2\theta)}{2}}$ and the above infinite product at $x = \frac{\pi}{2}$,

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots$$
As \(\lim_{t \to 0} \frac{\sin(t)}{t} = 1 \), we get

\[
\frac{\sin(x)}{x} = \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{2^2}\right) \cos\left(\frac{x}{2^3}\right) \cdots
\]

Using \(\cos(\theta) = \sqrt{\frac{1 + \cos(2\theta)}{2}} \) and the above infinite product at \(x = \frac{\pi}{2} \),

\[
\frac{2}{\pi} = \frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots
\]
Formal and informal references:

Informal References

- Documentaries:
 - Math and rise of civilizations:
 - BBC: Story of Mathematics: http://www.bbc.co.uk/programmes/b00dxjls/episodes/guide

- Websites:
 - The history of pi by David Wilson
 http://sites.math.rutgers.edu/~cherlin/History/Papers2000/wilson.html
 - Archimedes’ Approximation of Pi
 http://itech.fgcu.edu/faculty/clindsey/mhf4404/archimedes/archimedes.html
 - Euclid’s Elements
 https://mathcs.clarku.edu/~djoyce/java/elements/
 - Wekipedia: Ludolph Van Ceulen’s biography
 https://en.wikipedia.org/wiki/Ludolph_van_Ceulen
Formal and informal references:
Formal References

I would specially like to thank:
i) Prof. Marion Oliver for his support, interest in history of mathematics and encouragement for the concept of ‘Explore Math’.
ii) Prof. H. Demirkoparan and Prof. Z. Yilma for their help and suggestions.
iii) Kara, Angela, Catalina and Geetha for promoting the event and taking care of logistics.
iv) Ghost of Ludolph Van Ceulen for haunting me and pushing me to explore more about Pi :).
Q: What will a logician choose: a half of an egg or eternal bliss?
Q: What will a logician choose: a half of an egg or eternal bliss?

A: A half of an egg! Because nothing is better than eternal bliss, and a half of an egg is better than nothing.
Q: What will a logician choose: a half of an egg or eternal bliss?

A: A half of an egg! Because nothing is better than eternal bliss, and a half of an egg is better than nothing.